skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "LaMack, Cameron_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper explores the use of Gaussian process regression for system identification in control engineering. It introduces two novel approaches that utilize the data from a measured global system error. The paper demonstrates these approaches by identifying a simulated system with three subsystems, a one degree of freedom mass with two antagonist muscles. The first approach uses this whole-system error data alone, achieving accuracy on the same order of magnitude as subsystem-specific data ( 9.28 ± 0.87 N  vs.  6.96 ± 0.32 N of total model errors). This is significant, as it shows that the same data set can be used to identify unique subsystems, as opposed to requiring a set of data descriptive of only a single subsystem. The second approach demonstrated in this paper mixes traditional subsystem-specific data with the whole system error data, achieving up to 98.71% model improvement. 
    more » « less